DML研究会について

DML とは?

本調査研究会の英文名は, “Research Committee on Fusion of Machine Learning and Dynamics in Model-Based Control” です。和文名,英文名ともに長いタイトルなので,英文名を “Dynamical Machine Learning for Model-based Control” と短縮し,その最初の3つの頭文字から 「DML 研究会」 と呼ぶことにしました。

DML研究会の担当分野

いわゆるビッグデータを背景とした機械学習理論は,人工知能研究者のグループで精力的に研究されているが,その主流はデータオリエンティッドな方法論である。一方,われわれ制御のコミュニティでは,モデルベースト制御の枠組みで,対象となるシステムが従う物理的な法則(これをダイナミクスと呼ぶ)を数理モデルで表現し,そのモデルと対象から得られるデータの両方を用いたアプローチをとる。その典型的な例がカルマンフィルタであり,時系列やシステムのダイナミクスを状態空間モデルで表現し,さらに観測データを活用することによって,対象の状態推定(フィルタリング)を行っている。機械学習理論が物理化学的な対象に対してより効果的に機能するためには,このようなダイナミクスを考慮した機械学習理論の研究が,理論と産業応用の両面から強く望まれている。本調査研究会では,これを主な担当分野として活動する。

制御の分野で対象のデータを利用する方法として,システム同定理論が1960年代から研究されている。このシステム同定理論と機械学習理論の類似点と相違点を調べることによって,制御分野で機械学習理論を活用するための方法論を検討していくことも本調査研究会の担当分野である。

DML研究会の目的

本調査研究会では「データから将来使えそうな知識を見つけること」を意味する機械学習に着目する。たとえば自動車のような物理的な対象に対しては,その対象が従うダイナミクスを活用した機械学習が望まれる。これは制御分野ではグレーボックスモデリングと呼ばれている。本調査研究会では,対象がもつダイナミクスの機械学習への導入について検討することを目的とする。また,機械学習に対応するものとして,制御工学の分野ではシステム同定が古くから研究されているが,機械学習とシステム同定の類似点と相違点についても調べたい。

本調査研究会は制御理論研究者,制御応用研究者,企業の研究開発者を集め,ダイナミクスを考慮した機械学習の方向性に関して調査研究を行う。